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Abstract
A key challenge when building call routing applications is the
need for an extensive set of in-domain data that is manually
transcribed and labeled, a process which is both expensive and
time consuming. In this paper we analyze a Language Model
training approach based on unsupervised self-adaptation which
does not require any manual transcriptions of the in-domain
audio data. We investigate the usefulness of several sources of
language data for building bootstrapped LMs as well as an
utterance duration dependent adaptation scheme which
balances the required computational resources. Results on
deployed call routing applications show that the routing
accuracy obtained using the self-adapted LM is within 1-5%
absolute of the accuracy of the system trained on manual
transcriptions irrespective of the original bootstrapped LMs.
Index Terms: language model adaptation, call routing

1. Introduction
Spoken language understanding systems have been deployed in
numerous applications which require some sort of interaction
between humans and machines [4],[5]. Most of the time, the
interaction is controlled by the machine which asks users
questions and then attempts to identify the intended meaning of
their answers (expressed in natural language) and take actions
such that to satisfy their requests. An important class of
applications which currently employs Natural Language
Understanding (NLU) technology is “call routing” whose goal
is to automatically route a telephone query from a customer to
the appropriate set of agents based on a brief spoken
description of the problem [3]. Call routing systems reduce
queue time and call duration, thus saving money and
improving customer satisfaction by promptly connecting the
customer to the right service representative in call centers.
To find the meaning of a human utterance in a call routing

system, the caller’s speech is first translated into a text string
by an Automated Speech Recognition (ASR) system and the
text is then fed into a NLU component called Router. The
NLU task is modeled as a statistical classification problem: the
text corresponding to an utterance is assigned to one or more of
a set of predefined user intents (routes). Several classifiers
(boosting [6], Maximum Entropy (ME) [11], Support Vector
Machines (SVM) [8]) have been compared in the literature and
shown to produce similar performance (1-2% differences in
classification accuracy) [8]. The Router we employ in this
study uses binary unigram features and a standard back-
propagation neural network as a classifier.

Training a call routing application requires two sets of
manual annotations of the customer spoken utterances. The
first set of annotations, called transcriptions, denote the text
corresponding to the spoken waveforms and is used to train the
Language Model (LM) used in the ASR system as well as the
Router. The second set of annotations (labels), concerns the
customer’s intent and is used to train the Router. We assume
that during the pre-deployment stage the system can record the

human operator actions and each action directly corresponds to
one of the available system routes [11]. Therefore, very little or
no manually labeled data is needed. However, language data is
still needed to train the recognition LM.

As noted in [4], several approaches to enhance LM
portability have been proposed:
(i) obtaining additional language training material,
(ii) interpolating domain-specific LMs with other LMs
(iii) improving probability estimation with limited in-domain
data and
(iv) using unsupervised LM self-adaptation to in-domain audio

In this paper, we follow up on some of the ideas introduced
in [11] on LM self-adaptation using cross-validation schemes
and construct Language Models for several currently deployed
call routing applications without using any manual
transcriptions of the in-domain data. We report detailed results
on some issues not yet fully investigated in the literature:
� The effectiveness of various language data sources that may
be available for training the bootstrapped LM. Graphs of
the Word Recognition Accuracy (WRA) and router
accuracy (RA) corresponding to several adapted LMs are
shown and discussed

� An utterance duration dependent procedure for automated
transcription which balances the required computational
resources and makes it easy to detect and analyze (in the
research stage) the sources of recognition errors

Table 1. Data used for language model bootstrapping.

Description Number (thousands)
of utterances / words

Number
of routes

Application 1
(telecommunications)

80 / 530 (training set)
10 / 80 (test set)

129

Application 2
(telecommunications)

100 /730 (training set)
10 / 72 (test set)

865

Application 3
(government)

36 / 257 (training set)
5.1 / 37 (test set)

140

Application 4 (utilities) 18 / 72 (training set)
2 / 8 (test set)

37

Application 5 (only LM
data) telecommunications

703 / 4300
---

Fisher (US
conversational)

1800 / 20500
---

U. of W. web data 5000 / 61000 ---

2. Language Model Bootstrapping Data
Previous studies have discussed methods for reusing language
data [4][6][11]. Several data sources have been found to be
useful for replacing the current application’s (also called in-
domain) manually transcribed training set:
I. A small set (1-2 utterance samples for each route) of in-
domain manual transcriptions

II. Automatic transcriptions of in-domain audio data
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III. Manual transcriptions used for training other call routing
applications (either in the same-sector / vertical or in a
different sector)

IV. Transcriptions of spoken conversational data (e.g. the
Fisher corpus [7])

V. Conversational–like web-crawled text data [1].
Depending on the application and language spoken, various

subsets of the five data sources mentioned above may be
available. We have only focused on English applications where
large amounts of high quality, spoken conversational and
conversational-like text data have been collected. We also used
data from four call routing applications currently deployed by
Nuance Communications: two large (over 100 routes)
applications in the telecommunication sector, one large
application in the government sector and one medium scale
application in the utilities sector. Each application has its own
training and test sets fully transcribed and route sets which
differ (see Table 1) both quantitatively and qualitatively
(different number of slots corresponding to pieces of
information to be extracted from the spoken utterance). Each
application’s audio training set was automatically transcribed
as described in Section 3 and the automatic transcriptions were
used to train application specific LMs and Routers which were
subsequently tested on the application’s test set. The web-
crawled text data, besides its size, has a noticeable advantage:
it comes from multiple English speaking countries. This was
helpful in enhancing the lexicon for Application 2 which is
deployed in Canada and uses some words not encountered in
the US-collected Fisher corpus.
In order to assess the effectiveness of various data sources, we
investigate the following bootstrapped LMs (see also Table 2):
1.Human conversational (Fisher data): LM1.
2.Spoken conversational enhanced with conversational-like
text data: LM2.

3.Same sector application: LM3 trained on Application 5 was
tested on Applications 1 and 2. No same sector-data was
available for Applications 3 and 4.

4.Different sector application: LM4 trained on Application 3
was tested on Applications 1, 2 and 4 while LM3 was tested
on Application 3.

5.Leave-one-out: LM5 trained on all available data excluding
current application.

Table 2. Bootstrapped LMs used in the first recognition
pass of the LM adaptation process.

LM Description Lexicon
(K words)

2-grams
(K)

3-grams
(K)

LM1 Human conversational 36 1300 500
LM2 Spoken conversational +

conversational-like text data
82 2800 --

LM3 Same sector application 4 83 308
LM4 Different sector application 4 33 75
LM5 Leave-one-out 83 2800 --

All language models were trained using the weighted count
interpolation method and Good-Turing discounting [2]. Due to
our LM representation as Finite State Machines (FSM) we had
to limit the LM size to less than 3 million n-grams, therefore
LM2 and LM5 are heavily pruned bigram LMs.
The N-gram coverage of the bootstrapped LMs was

measured on each application’s training set and is shown in the
second column of Table 3. The first number represents the Out-

of-Vocabulary (OOV) rate, the last number is the percentage of
{2-3}-grams covered by each LM while the center number is
the percentage of words covered at 1-gram level. The Fisher
data has a small OOV rate of 0.2-0.8%. That rate is further
reduced to 0-0.3% when the web text data is added. Call
routing data from the same-sector application has a 1-1.5%
OOV rate while call routing data from a different-sector
application has a larger 2-6% rate. The {2-3}-gram coverage is
high: 85-95% for all LMs except for the different-sector LM
where coverage is only 65-75%. Therefore we expect few
recognition errors to be due to insufficient LM coverage.

3. Automated transcription of the in-
domain audio

In-domain (application specific) audio is usually collected
during the pre-deployment stage of an application or during
post-deployment tuning procedures. Several studies proposed
methods to automatically transcribe the in-domain audio using
unsupervised self-adaptation [9][11]. One typically starts by
building a bootstrapped LM followed by several iterations of
in-domain audio recognition and LM adaptation. We used the
five bootstrapped LMs described in Section 2.

Table 3. Language model coverage, word accuracy and
router accuracy corresponding to the bootstrapped and
adapted LMs during the LM self-adaptation process.

Appl. 1 Bootstrapped
LM coverage

Adapted LM
coverage

Pass I
WRA%

Pass II
WRA%

Test
WRA%

Test
RA%

Baseline 0.4 3.6 96 73.0 73.0 75.0 77.6
LM1 0.5 8.5 91 1.1 7.2 91.7 55.1 66.5 68.3 74.4
LM2 0.3 5.2 94.4 0.8 6.9 82.3 52.4 65.5 63.8 76.8
LM3 1.2 11.6 87.2 1.0 6.2 92.8 73.1 72.4 69.5 77.4
LM4 3.3 19.8 76.9 0.8 5.9 93.3 63.5 70.5 68.3 76.8
LM5 0.3 2.5 97.2 0.7 5.8 93.5 61.9 70.7 67.4 75.6
Appl. 2
Baseline 0.5 5.5 94 76.3 76.3 71.9 77.7
LM1 0.8 12 87.2 1.7 8.3 90 42.7 65.2 62.1 75.2
LM2 0.3 7.5 92.2 1.3 9.6 89.2 46.7 55.8 66.1 74.4
LM3 1.3 10.4 88.3 1.5 6.1 92.3 65.1 66.5 70.2 75.3
LM4 5.8 24.6 69.7 7.2 11.3 81.5 69.7 68.0 57.9 73.2
LM5 0.2 3.2 96.6 1.0 6.9 92.1 61.5 61.0 64.3 75.2
Appl. 3
Baseline 0.7 6.6 92.7 74.1 74.1 71.2 79.2
LM1 0.5 10 89.5 1.5 8.6 89.9 42.3 63.0 58.2 76.4
LM2 0.3 6.1 93.6 1.4 9.8 88.8 47.7 57.6 53.5 75.9
LM3 4.3 22.7 73 5.5 11.2 83.3 58.1 58.6 52.6 73.7
LM5 0.3 5.0 94.7 1.2 8.7 90.1 55.7 61.5 64.2 75.4
Appl. 4
Baseline 0.9 8.0 91.1 81.3 81.3 75.7 88.9
LM1 0.2 11 88.8 1.8 10.3 87.9 45.5 72.1 65.9 87.3
LM2 0 7.2 92.8 1.9 11.5 86.6 52.2 62.0 59.7 85.6
LM4 2.1 17 70.9 0.8 6.5 92.7 64.3 73.4 69.0 86.1
LM5 0 11.6 88.4 2.0 9.6 88.3 64.9 72.4 68.4 86.9

The detailed unsupervised transcription procedure is
shown in Figure 1 and consists of the following steps:

3.1. Sorting the in-domain utterances by duration

The in-domain utterances are sorted by duration and divided
into multiple batches of roughly equal total duration. That
places all utterances with identical (or close) transcriptions in
the same batch or in adjacent batches. These batches can be
decoded in parallel and require similar processing times.
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Figure 1: The unsupervised self-adaptation procedure
for automated transcription of the in-domain audio.

3.2. First-pass recognition using a bootstrapped LM

The in-domain utterances are first recognized using a LM
bootstrapped from the available language data. Figure 2 plots
the Word Recognition Accuracy (WRA = 1 – Word Error
Rate) for each batch and different LMs1 (including the
baseline LM trained on manual transcriptions).

Figure 2: First-pass word recognition accuracy as a
function of utterance duration for multiple
bootstrapped LMs.

Plotting the recognition accuracy on small batches as a
function of utterance duration2 has several advantages:
(i) It makes easier to detect and analyze the causes of
recognition errors especially the effect of the OOV words (for
example, the largest drop in accuracy with respect to the
baseline LM in Figure 2 occurs on utterances about 8-
phoneme long which correspond to the (duplicate) instances
of the OOV word “simpatico”)
(ii) It makes easier to design processing methods which
depend on the utterance length (for example it is easy to
notice in Figure 4 that the router accuracy is very low on long
utterances so it makes sense to reject them right away)

1 We found it less informative to show the accuracy graphs averaged
over the four applications since the shape of each graph is dependent
on application specific patterns (size and distribution of the training
set, OOVs, etc). Therefore we only show the accuracy graphs for
Application 2 (largest application) and note that the graphs
corresponding to the remaining three applications are very similar in
nature.
2 For a less cluttered display, the actual accuracy numbers were
smoothed using polynomial spline-functions

(iii) One can readily inspect the duration distribution and
amount of duplication among the training utterances (call
routing applications typically have a large number of
utterances which correspond to the same text string).
The WRAs are shown in the fourth column of Table 3 (as

well as in Figure 2) and compared to the two-way cross
recognition baseline (each half-training set is recognized
using a LM trained on the manual transcription of the other
half; as in Section 3.3). The WRAs corresponding to the
bootstrapped LMs are 10-35% (absolute) lower than the
baselines and the smallest accuracy drop is obtained when the
LM is trained on call routing transcriptions from different
applications. Figure 2 also shows that the call routing LMs
make fewer (and different) errors than the conversational LMs
on short (1-4 words) utterances since short utterances are very
common and better modeled in call routing applications.

3.3. Cross-adaptation of the language model

The utterance batches are next divided into two subsets
A1 and A2. Subset A1 contains the shortest and the longest
20% of the utterances, while subset A2 contains the remaining
mid-length utterances. In this way, one can minimize the
transcription overlap between A1 and A2 while each subset
can still retain a good representation of the full utterance set.
For each subset Ai build a language model LMi out of the text
recognized on Ai at step 3.2 (see Figure 1).

3.4. Second-pass recognition using self-adapted LMs

A second-pass recognition of the in-domain audio is
performed using the 2-way cross adapted LMs computed at
step 3.3. That is, subset A1 is recognized using LM2 and A2 is
recognized using LM1 in order to avoid feeding the
recognition errors at the previous step back into the
adaptation process [11].

Figure 3: Second-pass word recognition accuracy as a
function of utterance duration for multiple adapted LMs

Figure 3 and Table 3 show the WRAs for the five adapted
LMs. The accuracy differences corresponding to the adapted
LMs are much reduced with respect to those corresponding to
the bootstrapped LMs and most WRAs are less than 15%
(absolute) lower than the baseline. The adapted LMs
corresponding to bootstrapped LMs based on call routing data
are still 5-10% more accurate than the conversational-based
LMs.

App1Data
AppNData
Fisher
Web data

Bootstrapp
ed LM

First-pass
recognition

LM2

LM1 In-domain self
adapted LM

Second-pass
recognition

In-domain
training audio

In-domain
training audio

Router

Available LM
data

1564



3.5. Final LM adaptation

A final adapted LM as well as a Router is computed out of
the text recognized at step 3.4. The N-gram coverage of the
adapted LMs was measured on each application’s test set and
is shown in the third column of Table 3. The OOV rate is
higher by at least a factor of two with respect to the baseline
LM and by a factor of three with respect to the bootstrapped
LMs which suggests that no instance of some words was
correctly recognized during the adaptation process although
those words were covered by the bootstrapped LMs at least at
the 1-gram level (for example, the word “attendant” was
recognized as “I tend and”). Therefore, the final lexicon may
have to be combined with the lexicons used in related call
routing applications in order to insure a better word coverage.
The lexicon enhancement appears to benefit most applications
with smaller training sets (Applications 3 and 4 showed a
0.5% gain in RA while there was no gain for Applications 1
and 2).

Figure 4: Router accuracy as a function of utterance
duration for multiple adapted LMs.

The WRA on each application’s test set are shown in the
sixth column of Table 3 and are generally 5-15% lower than
the baseline. Figure 4 (and last column in Table 3) shows the
router accuracy (without rejection) measured on the
applications’ test sets. The RA differences among various
adapted LMs are quite small and there is only 2-5% absolute
loss compared to the baseline where both the LM and the
Router are trained on manual transcriptions. This fact
indicates that WRA is not well correlated and therefore not a
good predictor for the RA (see also [10]). The best router
performance is attained when starting with a bootstrapped LM
computed using data from a same-sector application if such
data is available. When that is not available, the
conversational LM can be used as a starting point. Notice that
the much lower OOV rate of the text-enhanced conversational
LM does not translate into better router accuracy, mostly due
to the increase in lexicon size.
Performing more adaptation iterations only slightly

increases the router accuracy (0.3-0.5%) therefore, depending
on the computational resources which are available, one may
decide to stop after a single iteration. However, performing a
single recognition pass through the audio generates a
relatively large loss in RA although the loss in WRA may be
quite small. For example, on App. 1, a single recognition pass

using LM3 decreases the WRA from 69.5% to 68% but the RA
degrades a lot more from 77.4% to 71.9%.

4. Conclusions
In this paper we demonstrated that it is possible to train
Language Models for call routing applications with no manual
transcriptions of the in-domain data. We investigated the
usefulness of several sources of language data for building
bootstrapped LMs and showed that the routing accuracy
obtained using self-adapted LMs is within 1-5% absolute of the
accuracy of the system trained on manual transcriptions
irrespective of the original bootstrapped LMs. However, if in-
domain audio is not available, the routing accuracy loss is
higher (6-12% absolute, see also [6]) and bootstrapped LMs
trained on manual transcriptions from the same industry
applications are more effective than bootstrapped LMs trained
on general conversational data.
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